We investigated the absorbed radio-frequency electromagnetic power in four different real insects as a function of frequency from 2–120 GHz. Micro-CT imaging was used to obtain realistic models of real insects. These models were assigned dielectric parameters obtained from literature and used in finite-difference time-domain simulations. All insects show a dependence of the absorbed power on the frequency with a peak frequency that depends on their size and dielectric properties. The insects show a maximum in absorbed radio frequency power at wavelengths that are comparable to their body size. They show a general increase in absorbed radio-frequency power above 6 GHz (until the frequencies where the wavelengths are comparable to their body size), which indicates that if the used power densities do not decrease, but shift (partly) to higher frequencies, the absorption in the studied insects will increase as well. A shift of 10% of the incident power density to frequencies above 6 GHz would lead to an increase in absorbed power between 3–370%. This could lead to changes in insect behaviour, physiology, and morphology over time due to an increase in body temperatures, from dielectric heating. The studied insects that are smaller than 1 cm show a peak in absorption at frequencies (above 6 GHz), which are currently not often used for telecommunication, but are planned to be used in the next generation of wireless telecommunication systems. At frequencies above the peak frequency (smaller wavelengths) the absorbed power decreases slightly.

MORE INFO HERE  Insects, and why they matter

Source