Share

Continuous Exposure to 1.7 GHz LTE Electromagnetic Fields Increases Intracellular Reactive Oxygen Species to Decrease Human Cell Proliferation and Induce Senescence. Choi, J., Min, K., Jeon, S. et al.  Scientific Reports 2020

The journal Scientific Reports published a new study (Choi, J., Min, K., Jeon, S. et al. 2020) exposing human cells to 1.7 GHz LTE. The findings of effects “suggests that the exposure to 1.7 GHz LTE RF-EMF would be more harmful to children, whose adult stem cells should be very active for growth and may accelerate the aging of body cells.”  The authors clarify that “It is not plausible to directly predict the physiological effects of 1.7 GHz LTE RF-EMF from our cell-based study.”

1.7 GHz is the same as 1700 MHz and this spectrum is used by several companies. 

In 2014, the  Federal Communications Commission (Commission) adopted rules governing use of spectrum in the 1695-1710 MHz, 1755-1780 MHz, and 2155-2180 MHz bands to make available significantly more commercial spectrum for Advanced Wireless Services.

Abstract

“Due to the rapid development of mobile phone technology, we are continuously exposed to 1.7 GHz LTE radio frequency electromagnetic fields (RF-EMFs), but their biological effects have not been clarified. Here, we investigated the non-thermal cellular effects of these RF-EMFs on human cells, including human adipose tissue-derived stem cells (ASCs), Huh7 and Hep3B liver cancer stem cells (CSCs), HeLa and SH-SY5Y cancer cells, and normal fibroblast IMR-90 cells. When continuously exposed to 1.7 GHz LTE RF-EMF for 72 h at 1 and 2 SAR, cell proliferation was consistently decreased in all the human cells. The anti-proliferative effect was higher at 2 SAR than 1 SAR and was less severe in ASCs. The exposure to RF-EMF for 72 h at 1 and 2 SAR did not induce DNA double strand breaks or apoptotic cell death, but did trigger a slight delay in the G1 to S cell cycle transition. Cell senescence was also clearly observed in ASC and Huh7 cells exposed to RF-EMF at 2 SAR for 72 h. Intracellular ROS increased in these cells and the treatment with an ROS scavenger recapitulated the anti-proliferative effect of RF-EMF. These observations strongly suggest that 1.7 GHz LTE RF-EMF decrease proliferation and increase senescence by increasing intracellular ROS in human cells.”

MORE INFO HERE  Jackson Hole Environmental Health Trust Film Series

The paper concludes that

“Altogether, this study as well as other studies strongly suggest that RF-EMF exposure leads to a change in intracellular ROS levels that may result in genotoxic stress, decreased proliferation and cell senescence, or no physiological effects depending on ROS concentration and the differential sensitivity of various cells to ROS. Thus, the mechanism behind RF-EMF exposure altering intracellular ROS levels should be further studied to elucidate the biological effects of RF-EMFs.”

“It is not plausible to directly predict the physiological effects of 1.7 GHz LTE RF-EMF from our cell-based study. However, the anti-proliferative effect of 1.7 GHz LTE RF-EMF on various human cells in this study suggests that the exposure to 1.7 GHz LTE RF-EMF would be more harmful to children, whose adult stem cells should be very active for growth and may accelerate the aging of body cells. We also carefully suggest that the anti-proliferative effect of various cancer cells by 1.7 GHz LTE RF-EMF would be interpreted with care, considering that both positive and negative effects of RF-EMF have been reported on cancer development.”

MORE INFO HERE  An example of bias in science reporting: 5G partnership between the New York Times and Verizon.

This work was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) [No. NRF-2016M3A9C6918275], and by Korea Mobile EMF consortium. J. Choi was partially supported by Brain Korea (BK) 21 PLUS of 2018~2019.

Choi, J., Min, K., Jeon, S. et al. Continuous Exposure to 1.7 GHz LTE Electromagnetic Fields Increases Intracellular Reactive Oxygen Species to Decrease Human Cell Proliferation and Induce Senescence. Sci Rep 10, 9238 (2020). https://doi.org/10.1038/s41598-020-65732-4

Author information

MORE INFO HERE  (PDF) Electrosmog and autoimmune disease
Share

https://ehtrust.org/korean-government-funded-study-finds-1-76%e2%80%89ghz-lte-wireless-impacts-human-cells/